Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C32⋊C4

Direct product G=N×Q with N=C2 and Q=S3×C32⋊C4
dρLabelID
C2×S3×C32⋊C4248+C2xS3xC3^2:C4432,753


Non-split extensions G=N.Q with N=C2 and Q=S3×C32⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C32⋊C4) = Dic3×C32⋊C4central extension (φ=1)488-C2.1(S3xC3^2:C4)432,567
C2.2(S3×C32⋊C4) = S3×C322C8central extension (φ=1)488-C2.2(S3xC3^2:C4)432,570
C2.3(S3×C32⋊C4) = C335(C2×C8)central extension (φ=1)248+C2.3(S3xC3^2:C4)432,571
C2.4(S3×C32⋊C4) = D6⋊(C32⋊C4)central stem extension (φ=1)248+C2.4(S3xC3^2:C4)432,568
C2.5(S3×C32⋊C4) = C33⋊(C4⋊C4)central stem extension (φ=1)488-C2.5(S3xC3^2:C4)432,569
C2.6(S3×C32⋊C4) = C33⋊M4(2)central stem extension (φ=1)488-C2.6(S3xC3^2:C4)432,572
C2.7(S3×C32⋊C4) = C332M4(2)central stem extension (φ=1)248+C2.7(S3xC3^2:C4)432,573

׿
×
𝔽